Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization
نویسندگان
چکیده
The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.
منابع مشابه
Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale
Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Incr...
متن کاملMultiscale Gas Transport in Shales With Local Kerogen Heterogeneities
On the basis of microand mesoscale investigations, a new mathematical formulation is introduced in detail to investigate multiscale gas-transport phenomena in organic-rich-shale core samples. The formulation includes dual-porosity continua, where shale permeability is associated with inorganic matrix with relatively large irregularly shaped pores and fractures, whereas molecular phenomena (diff...
متن کاملPore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a...
متن کاملSPE-168966-MS Modeling Analysis of Transient Pressure and Flow Behavior at Horizontal Wells with Multi-Stage Hydraulic Fractures in Shale Gas Reservoirs
Handling flow through fractured media is critical for transient pressure and flow analysis in shale gas reservoirs, because gas production from such low-permeability formations relies on fractures, from hydraulic fractures and fracture network to various-scaled natural fractures, to provide flow channels for gas flow into producing wells. This study presents a numerical investigation of pressur...
متن کاملInvestigation of the Main Factors During Shale-gas Production Using Grey Relational Analysis
Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity, etc) have high un...
متن کامل